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Abstract
Superhard cubic boron–carbon nitride (c-BNC) in terms of bulk modulus along a composition
range of (BN)(1−x)(C2)x (0 � x � 1) is systematically explored by Monte Carlo simulations
and cluster expansion techniques based on first-principles calculation. Bulk moduli for the
c-BNC ordered structures are reasonably expanded up to quadruplet clusters, indicating that
dependence of the bulk modulus on atomic arrangements is not simply attributed to pairwise
interactions. A negative correlation can be seen between bulk modulus and formation energies,
which is consistent with previous theoretical works. Monte Carlo simulation reveals that all the
ordered structures with the highest bulk modulus at each composition exhibit a strong
preference of neighboring B–N and C–C atoms, which is consistent with the bond counting rule
previously suggested. A composition dependence of these ordered structures can be observed.
At a BN-rich composition of x = 0.25, C atoms form a nearest-neighbor network with a
hexagonal cluster shape, while at equiatomic and diamond-rich compositions of x = 0.5 and
0.75, B and N atoms form nearest-neighbor networks with a planar shape. At x = 0.875,
c-BNC ordered structure with neighboring B and N atoms forming a stereoscopic shape exhibit
the highest bulk modulus of 459.3 GPa, which is ∼0.6% smaller than that of diamond.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Alloys of diamond and cubic (c)-BN, cubic BNC
(c-BNC), have been promising candidates for new superhard
materials and are expected to show high thermal and chem-
ical stability compared with diamond, which are motivated
by the similarity of lattice constants, high melting tempera-
ture and bulk modulus, and similar thermal expansion coeffi-
cients of diamond and c-BN. With these promising potential-
ities, several syntheses of c-BNC are successfully performed
and their physical properties are carefully investigated so far.
The synthesized c-BNC exhibits a wide variety of bulk mod-
uli: Solozhenko et al [1] synthesized c-BC2N using hydrostatic
compression of ∼30 GPa, which shows a bulk modulus of
282 ± 15 GPa. Tkachev et al [2] measured a bulk modulus
of 259 ± 22 for the c-BC2N using Brillouin scattering. The
synthesized c-BC2N for [1] and [2] show significantly smaller
bulk moduli than that of c-BN (370–400 GPa) [3]. Meanwhile,
Komatsu et al [4] obtained c-BC2N with a bulk modulus of

401 GPa that is larger than that of c-BN. Such c-BCN com-
pounds with high bulk modulus are also synthesized by other
investigations: Knittle et al [5] synthesized cubic C0.33(BN)0.67

under a high pressure of 30–50 GPa and high temperature of
2000–2500 K, which shows bulk moduli of 355 ± 19 GPa.

Theoretical investigations based on density functional
theory (DFT) have also been actively carried out in order to
identify the c-BNC phase with experimentally observed lower
and higher bulk moduli and to search for ordered c-BNC
structure with high hardness. Sun et al [6] perform a DFT
calculation on all seven possible c-BC2N ordered structures
within the unit cell, which show bulk moduli of 290–400 GPa.
Zhang et al [7] address the hardness of several c-BC2N ordered
structures in terms of compositional anisotropy and strain
dependence of bonding character. Pan et al [8] reported the
possible path of cubic–graphitic transformation and stability
of the high density phase for the c-BC2N, which predict that
synthesis of the cubic phase from a graphitic structure can
yield high critical tensile strength. Paiva et al [9] investigated
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five cubic (BN)xC2(1−x) (0 � x � 1) ordered structures
and show that composition dependence of bulk moduli ranging
from 370–400 GPa exhibit negative deviation from the linear
average of c-BN and diamond. Guo et al [10] estimated the
Vickers hardness for four selected configuration of c-BC2N in
the unit cell and predicted that c-BC2N can be the second-
hardest material instead of c-BN. Chen et al [11] predicted
c-BC2N with higher bulk moduli of 400–420 GPa based on the
bond counting rule [12], where the structures are characterized
by a short period (111) superlattice. Zhou et al [13] also
predict superhard c-BC2N with a 16-atom cell, where the bulk
modulus is estimated to be ∼402.7 GPa.

These previous studies certainly give us a wide variety
of important information about the relationship between
the hardness of c-BC2N and chemical bonding or atomic
arrangements. However, in terms of designing superhard
c-BC2N materials through ab initio calculations, there still
remains a good possibility that a new superhard c-BC2N
ordered structure can be found. This is because, in the
previous studies, (i) the model structures for the c-BCN are
somehow constructed artificially or are preliminary confined
to specific atomic arrangements, (ii) the number of structures
that were considered are extremely small (within a few tens of
structures), while even 2×2×2 expansion of the diamond unit
cell with B, C and N atoms results in 364 structures, which is
an astronomical number and (iii) the composition investigated
is mostly confined to BC2N in order to compare with those
measured such as high and low density phases.

With these considerations, further investigation is required
in order to comprehensively search the potentialities for
superhard c-BCN alloys. In the present work, the hardness
of the c-BNC alloy is examined in terms of the bulk modulus
in the composition range of (BN)(1−x)(C2)x (0 � x � 1),
which has naturally led from the mixture of c-BN and diamond.
Note that, although the bulk modulus, B0, does not necessarily
correspond to the practical hardness of the material [7], it
certainly reflects the ideal hardness near equilibrium positions
under isotropic compression. In order to systematically and
effectively search superhard c-BNC ordered structures, we
employ the cluster expansion [14, 15] (CE) technique based
on the DFT total energy calculations. A definite advantage
in using the CE is that (i) by using the limited number of
DFT calculations for B0, the CE can powerfully predict B0 for
millions of c-BNC ordered structures with desirable accuracy
and (ii) the DFT input structures are self-consistently selected,
and not by hand, so that atomic arrangements of c-BNC with
higher B0 are effectively predicted. The details of the present
calculation is described in the following sections.

2. Methodology

2.1. Cluster expansion technique

Since the bulk modulus B0 is a function of atomic arrangement
�σ and composition, the CE technique can be applied to expand
B0. The essence of the CE is an expansion of any property
(here, B0) in terms of the atomic arrangements. In this
technique, we first introduce the variables σi = {+1, 0,−1}

that specify the occupation of B, C and N atoms at lattice point
i on a heterodiamond structure. Using σi , we can construct
functions that are complete and orthonormal for the whole N
lattice points in the given system [16]:

B0(�σ ) = V0�0 +
∑

n

∑

(τ )

V (τ )
n �(τ)

n (�σ)

�(τ)
n =

∏

i∈n
d∈(τ )

φd(σi ) φ0(σi ) = 1

φ1(σi ) =
√

3
2σi φ2(σi ) = −√

2(1 − 3
2σ 2

i ),

(1)

where the expansion coefficient V is typically called an
effective cluster interaction (ECI) that is independent of �σ ,
φ(σi ) is the orthonormal basis function at lattice point i and
� is called the cluster function obtained by products of φs.
n specifies the set of lattice points whose basis function is
not unity (i.e. �=φ0), which corresponds to the cluster figure.
(τ ) specifies the set of basis-function indexes described by the
subscript of φ.

In order to determine the ECIs, we perform least-squares
(LS) fitting of the B0 for c-BNC ordered structures obtained
via DFT calculations. B0 is estimated by applying the
finite compression or expansion of volume to the geometry-
optimized cell [20]. For DFT calculations on c-BNC
under compression or expansion, geometry optimization is
performed with constant volume. We obtain B0 for 255 ordered
structures, each of which consists of 64 atoms, i.e. a 2 × 2 × 2
expansion of the unit cell in the diamond structure. Other DFT
calculation conditions are described elsewhere [16, 17]. Due
to the limitation number of DFT calculations, the expansion in
equation (1) should be truncated at finite order. Therefore, we
should choose an optimal set of clusters {n} that give accurate
prediction of bulk modulus for given atomic arrangements.
An optimal set of clusters are chosen using the genetic
algorithm [18, 19] to minimize the uncertainty of B0 predicted
by ECIs, called a cross-validation (CV) score [22, 23]. An
optimal set of DFT input structures is chosen in a similar
way to choosing energetically favorable structures based on
the construction of a ground-state diagram [21]: (i) B0 for
randomly selected ordered structures are estimated via DFT
calculation, which are then applied to a genetic algorithm
to obtain an optimal set of clusters and their ECIs. (ii) B0

for all possible atomic arrangements and compositions are
comprehensively estimated using the resultant ECIs. (iii) For
each composition, when ordered structures with higher bulk
modulus are not included in the DFT calculations, B0 for these
structures are estimated via DFT calculation. The procedure
(i)–(iii) is repeated until the CE prediction in (iii) becomes
consistent in the DFT calculation.

2.2. Monte Carlo simulation

Since for the ternary (BN)(1−x)(C2)x (0 � x � 1) system,
even a 2 × 2 × 2 expansion of the diamond unit cell
have a astronomical number of possible atomic arrangements,
estimation of B0 for all these arrangements is not practical.
In the present work, we perform MC simulation with a
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Figure 1. Selected multibody clusters used in the expansion of bulk modulus for c-BNC ordered structures. Tetrahedral and fcc sites are
illustrated by yellow and blue spheres (or faint color in the monochrome image). Black (or dark) spheres connected with bold lines denote
used clusters.

simulated algorithm in order to effectively sweep across
the representative and highest B0 among possible atomic
arrangements. In the MC, the flipping probability from old
state i to new state j is given by

Pi→ j = exp

(
− �B

kBT

)
, (2)

where �B denotes the bulk modulus for a new state measured
from that for the old state and T corresponds to the temperature
for conventional MC simulation under a canonical ensemble.
We perform MC simulation using a 2 × 2 × 2 expansion of a
diamond unit cell under three-dimensional periodic boundary
conditions. Initial temperature of the MC simulation box is at
T = 1000 K, and is gradually decreased by 5 K after 10 000
Monte Carlo steps per site until the temperature becomes
0 K. During the simulation, all the B0 for each MC step are
recorded.

3. Results and discussion

3.1. Effective cluster interactions for c-BNC ternary system

Following the procedure in section 2, we finally choose 11
clusters consisting of one empty, one point, three pair, four

triplet and two quadruplet clusters; multibody clusters are
shown in figure 1. These multibody clusters all consist of
up to eighth-nearest-neighbor pairs. The set of clusters shows
a CV score of 0.7 GPa, where the standard deviation of the
DFT fitted bulk modulus is 55.4 GPa. These clusters give
sufficient accuracy for expressing relative B0 of individual
atomic arrangements in the c-BNC. Figure 2 shows the
corresponding ECIs. We can see that ECIs for the triplet
and quadruplet clusters are of the same order as those for the
pair clusters, which is in contrast to the expansion of c-BNC
total energies where ECIs for pair clusters, particularly along
first-nearest-neighbor (1-NN) coordination, possess dominant
contribution [16, 17]. This fact certainly indicates that the
dependence of bulk modulus on atomic arrangements is not
simply attributed to the pairwise interactions.

3.2. Bulk modulus for c-BNC

We first show in figure 3 the bulk modulus obtained via DFT
calculation as a function of formation energy. Here, the
formation energy of Eform is defined as

Eform(�σ) = E(�σ) − (1 − x)Ec−BN − 2x Ediamond, (3)

3



J. Phys.: Condens. Matter 21 (2009) 415403 K Yuge

Figure 2. Effective cluster interactions for the multibody clusters in
c-BNC. Parentheses denote basis functions for each lattice point
given by equation (1).

where E(�σ) denotes total energy of the c-BNC ordered
structure in a composition of (BN)(1−x)(C2)x , and Ec−BN

and Ediamond denote total energy of c-BN and diamond in
the formula unit, respectively. Calculated B0 for diamond
and c-BN are estimated to be 462 and 397 GPa, which
are in satisfactory agreement with the measured B0 of
443 GPa [5, 24] and 369 ± 14 GPa [25]. Slightly higher bulk
moduli of both diamond and c-BN in the present calculation are
due to zero-temperature calculation where thermal expansion
is neglected and to the LDA approximation to the exchange–
correlation functional which typically underestimates lattice
constants, resulting in overestimation of B0. It is clear from
figure 3 that there is certainly a negative correlation between
bulk modulus and formation energy: structures with lower
formation energies tend to have a higher bulk modulus, which
is consistent with previous theoretical predictions [12, 13].
This can be partially attributed to the fact that the formation
of energetically stable neighboring B–N bonds decrease the
volume of the c-BNC alloy [17, 26], which would lead to an
increase in bulk modulus. All the structures exhibit positive
formation energies, indicating no stable c-BNC ordered
structures with high bulk modulus exists between diamond and
c-BN.

A comprehensive search of bulk modulus with respect to
composition x can be performed by applying ECIs in figure 2
to the MC simulation with a simulated annealing algorithm
described in section 2. Figure 4 shows the resultant bulk
modulus for the representative ordered structures as a function
of composition x whose grid is set at 0.125. Horizontal dotted
lines correspond to the bulk modulus of c-BN and diamond.
Several important features can be seen from figure 4: (i)
there exists several ordered structures that exhibit higher bulk
modulus than that of the c-BN for a composition range of
x � 0.25. (ii) With an increase of composition x , bulk moduli
for ordered structures with highest and lowest B0 both increase.
(iii) At x = 0.825, an ordered structure with the highest B0 is
found where B0 is slightly lower than that of diamond. (iv)

Figure 3. Bulk modulus B0 for ordered structures obtained via DFT
calculation as a function of DFT formation energies defined in
equation (3).

Figure 4. Cluster expansion prediction of bulk modulus B0 for
possible ordered c-BNC structures as a function of composition x .

Dispersion of the bulk modulus get larger with the decrease in
x , which will be discussed later.

In order to see the actual atomic arrangements that possess
higher bulk moduli in figure 4, we illustrate in figure 5 the
ordered structures that exhibit the highest or second-highest
bulk modulus at x = 0.25, 0.5, 0.75 and 0.825. Black
spheres denote C atoms, and green and white spheres denote
B and N atoms, respectively. In figure 5, neighboring C–
C or B–N bonds are illustrated together in order to make
intuitively clear the atomic arrangements. We can clearly see
that structural character for highest bulk modulus certainly
depends on concentration. At x = 0.5 and 0.75 for BNC2-
1, BNC6-1 and BNC6-2, they have a characteristic nearest-
neighbor B–N network along the (111) plane: BNC2-1 at
x = 0.5 has alternate stacking of neighboring B–N and C–C
networks with the (111) plane similar to L11 ordering in CuPt
alloy. BNC6-1 and BNC6-2 at x = 0.75 have neighboring
B–N networks in single or a combination of planar shapes
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Figure 5. Predicted c-BNC ordered structures that exhibit highest or second-highest bulk modulus at x = 0.25, 0.5, 0.75 and 0.825. Black,
green (or gray in the monochrome image) and white spheres denote C, B and N atoms, respectively.

Table 1. Bulk modulus B0, volume for 64-atom cell, and affinity α defined in equation (4) along 1-NN coordination. Brackets in the volume
V column denote deviation from the linear-average volume of c-BN and diamond (i.e. Vegard’s law).

Affinity

x Structure B0 (GPa) V (Å
3
) αBB αCC αNN αBC αBN αCN

0.25 (BN)3C2-1 403.3 367.21 (+0.7%) −1.00 1.50 −1.00 −0.50 1.33 −0.50
(BN)3C2-2 401.3 367.21 (+0.7%) −1.00 1.50 −1.00 −0.50 1.33 −0.50

0.5 BNC2-1 419.2 364.25 (+0.9%) −1.00 0.50 −1.00 −0.50 2.00 −0.50
BNC2-2 418.4 364.13 (+0.8%) −1.00 0.50 −1.00 −0.50 2.00 −0.50

0.75 BNC6-1 443.9 359.83 (+0.6%) −1.00 0.15 −1.00 −0.46 3.75 −0.46
BNC6-2 444.9 359.67 (+0.6%) −1.00 0.17 −1.00 −0.50 4.00 −0.50

0.825 BNC14 459.3 357.05 (+0.2%) −1.00 0.06 −1.00 −0.43 7.00 −0.43

that have an interface of the (111) plane with C atoms. In
particular, the BNC2-1 structure at x = 0.5 is consistent with
the BC2N1×1 structure theoretically modeled by Chen et al
[26] which is predicted to be the synthesized high density c-
BNC phase containing large amounts of (111) superlattices.
For BNC2-2 at x = 0.5, the structure seems phase separating
in a finite cell with its interface between diamond and c-BN
consisting of the (110) plane. For the BNC14 at x = 0.825
with the highest bulk modulus, B and N atoms form a nearest-
neighbor network with stereoscopic shape, not with a planar
shape. At x = 0.25 for (BN)3C2-1 and-2, C atoms form a
nearest-neighbor network with cluster-like shape that consists
of six-atom hexagons, each of which share sides or vertices. In
order to quantitatively see which elemental bonds are preferred
in ordered structures with high bulk modulus, we introduce the
affinity α defined as

αIJ = yIJ(system)

yIJ(random)
− 1, (4)

where yIJ(system) and yIJ(random) represent the pair
probability of I–J elements for the system and completely
disordered alloy, respectively. Therefore, αIJ > 0 represents
a preference of I–J bonds and αIJ < 0 a lack of preference.

Note that from the definition of the affinity of equation (4), the
lower limit of α is −1, while the upper limit depends on the
system.

Table 1 summarizes predicted bulk modulus, volume for
64-atom cell and affinity α defined in equation (4) along
a 1-NN coordination for ordered structures illustrated in
figure 5. The volumes for all the structures exhibit slightly
positive deviation (0.2–0.7%) from Vegard’s law, which
agrees with a positive deviation of 0.5–1.1% for synthesized
(BN)x C(1−x) (x = 0.3–0.33, 0.5, 0.6) solid solution with high
bulk modulus of 355 ± 19 GPa [5]. All the ordered structures
with highest bulk modulus exhibit positive affinity for B–N
and C–C bonds along 1-NN coordination. As a counterpart,
the affinity for other bonds show a negative value: affinities
for B–B and N–N bonds are −1, while those for B–C and
C–N bonds show a negative but larger than −1 value. This
can explain the dependence of dispersion in the bulk modulus
on composition x in figure 4: c-BNC ordered structures with
high bulk modulus prefer neighboring B–N and C–C bonds
while strongly disfavoring B–B and N–N bonds. At smaller
x , there can be a wide variety of atomic arrangements with a
large number of B–B and N–N bonds or a large number of B–N
bonds due to a large number of B and N atoms, which naturally
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result in a larger dispersion in bulk modulus. Meanwhile, at
larger x , due to a decrease in the number of B and N atoms, the
number of ordered structures with lower bulk modulus should
significantly decrease, leading to a decrease of dispersion in
the bulk modulus. The tendency of the affinity also holds for
energetically favored c-BNC ordered structures which strongly
favor neighboring B–N and C–C bonds while disfavoring B–B
and N–N bonds [16]. Therefore, energetically favored ordered
structures tend to exhibit higher bulk modulus, which can
also be seen in figure 3. Moreover, formation of neighboring
B–N and C–C bonds tend to decrease the volume of the c-
BNC ordered structures [17], which would also contribute to
an increase in bulk modulus. The tendency of affinities to
increase in bulk modulus agrees with the previously proposed
bond counting rule, where energetically favored neighboring
B–N and C–C bonds tend to increase the hardness of the c-
BNC [12, 13]. However, such a rule is clearly not sufficient
to explain the composition dependence of the B–N or C–C
bond network, as shown in figure 5. Bulk modulus for the
c-BNC is not simply attributed to pairwise but to multibody
interactions as shown in figure 2, which indicates that the
present comprehensive and automatic study can be an effective
and widely applicable approach to the design of superhard
materials based on ab initio calculations. Since the predicted
ordered structures at x � 0.75 with higher bulk modulus
than those at x = 0.5 have not been reported so far, these
results could significantly contribute to the experimental trial
to synthesize the superhard c-BNC by experimental work.

4. Conclusions

Superhard cubic boron–carbon nitride (c-BNC) in the
composition range of (BN)(1−x)(C2)x (0 � x � 1) is
systematically investigated by a combination of Monte Carlo
simulations and cluster expansion techniques based on the
first-principles calculation. ECIs for quadruplet clusters in
the expansion of the bulk modulus are of the same order
as those for pair clusters, indicating that dependence of the
bulk modulus on atomic arrangements is not simply attributed
to pairwise interactions. Negative correlation can be seen
between the bulk modulus and formation energies, which is
consistent with previous theoretical works. MC simulation
with a simulated annealing algorithm reveal that all the ordered
structures with highest bulk modulus at each composition
exhibit a strong preference of neighboring B–N and C–
C atoms, which is consistent with the bond counting rule
previously suggested. Formation of the neighboring B–N and
C–C atoms is energetically preferred and also decrease the
volume of the c-BNC solid solution, which would contribute
to increasing the bulk modulus. Composition dependence of
atomic arrangements with the highest bulk modulus can be
seen: at a BN-rich composition of x = 0.25, C atoms form
a nearest-neighbor network with a hexagonal cluster shape,
while at equiatomic and diamond-rich compositions of x = 0.5
and 0.75, B and N atoms form a nearest-neighbor network

with a planar shape. At x = 0.5, predicted ordered structure
is consistent with a theoretically modeled BC2N1×1 structure,
which is predicted to be the synthesized high density c-BNC
phase containing a large amount of (111) superlattices. For
other compositions of x � 0.25, we have found several ordered
structures with higher bulk modulus than that of c-BN. Since
the predicted ordered structures have not been reported so
far, the present results contribute to an experimental trial to
synthesize such superhard c-BNC.
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